Publications

Total : 195
  • Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li metal batteries [Nature Communications, 14, 4047 (2023)​]
    [175] Weakly coordinated Li ion in single-ion-conductor-based composite enabling low electrolyte content Li metal batteries [Nature Communications, 14, 4047 (2023)​]

    H. Kwon, H.-J. Choi, J. Jang, J. Lee, J. Jung, W. Lee, Y. Roh, J. Baek, D. J. Shin, J.-H. Lee, N.-S. Choi*, Y. S. Meng*, H.-T. Kim*

    https://doi.org/10.1038/s41467-023-39673-1
  • Leaching organics from the interphase [Nature Energy, 8, 911 (2023)​]
    [174] Leaching organics from the interphase [Nature Energy, 8, 911 (2023)​]

    H-T. Kim*

    https://doi.org/10.1038/s41560-023-01281-0
  • Impact of the binding ability of anion exchange ionomer on the initial performance degradation of anion exchange membrane water electrolyzers [Chemical Engineering J. 469, 143919 (2023)​]
    [173] Impact of the binding ability of anion exchange ionomer on the initial performance degradation of anion exchange membrane water electrolyzers [Chemical Engineering J. 469, 143919 (2023)​]

    J. Hyun, S. H. Yang, D. W. Lee, E. Oh, H. Bae, M. S. Cha, G. Doo*, J. Y. Lee*, H.-T. Kim*

    https://doi.org/10.1016/j.cej.2023.143919
  • Manufacturing and structural control of slurry-cast catalyst layers for AEMFC [J. Power Sources, 573, 233161 (2023)​]
    [172] Manufacturing and structural control of slurry-cast catalyst layers for AEMFC [J. Power Sources, 573, 233161 (2023)​]

    J. Hyun, D. W. Lee; E. Oh, H. Bae; J. Park, G. Doo*, H.-T. Kim*

    https://doi.org/10.1016/j.jpowsour.2023.233161
  • Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis [ACS Energy Letters, 8, 2214-2220 (2023)]
    [171] Contact Problems of IrOx Anodes in Polymer Electrolyte Membrane Water Electrolysis [ACS Energy Letters, 8, 2214-2220 (2023)]

    G. Doo, J. Park, J. Park, J. Heo, J. Jung, D. W. Lee, H. Bae, J. Hyun, E. Oh, J. Kwen, K. M. Kim, H.-T. Kim*

    https://doi.org/10.1021/acsenergylett.3c00291
  • Tuning of electrolyte solvation structure for low-temperature operation of lithium–sulfur batteries [Energy Storage Materials, 59, 1027863 (2023)​]
    [170] Tuning of electrolyte solvation structure for low-temperature operation of lithium–sulfur batteries [Energy Storage Materials, 59, 1027863 (2023)​]

    S. Kim, J. Jung, I. Kim, H. Kwon, H. Cho, W. Cho, H.-T. Kim*

    https://doi.org/10.1016/j.ensm.2023.04.002
  • Modified viologen-assisted reversible bromine capture and release in flowless zinc–bromine batteries [Chem. Eng. J., 464, 142624 (2023)​]
    [169] Modified viologen-assisted reversible bromine capture and release in flowless zinc–bromine batteries [Chem. Eng. J., 464, 142624 (2023)​]

    S. H. Han, S. Kim, H. Y Lim, S. Park, K. Shin, S. Kim, H.-T Kim, S. K Kwak*, C. Yang*, N.-S. Choi*

    https://doi.org/10.1016/j.cej.2023.142624
  • A mesoporous tungsten oxynitride nanofibers/graphite felt composite electrode with high catalytic activity for the cathode in Zn-Br flow battery [Small, 2208280 (2023)​]
    [168] A mesoporous tungsten oxynitride nanofibers/graphite felt composite electrode with high catalytic activity for the cathode in Zn-Br flow battery [Small, 2208280 (2023)​]

    H. J. Jung, J. Lee, J. Park, K .Shin, H.-T. Kim*, E. Cho*

    https://doi.org/10.1002/smll.202208280
  • Confronting sulfur electrode passivation and Li metal electrode degradation in lithium sulfur batteries using thiocyanate anion [Advanced Science, 10, 2301006 (2023)​]
    [167] Confronting sulfur electrode passivation and Li metal electrode degradation in lithium sulfur batteries using thiocyanate anion [Advanced Science, 10, 2301006 (2023)​]

    J. Jung, H. Chu, I. Kim, D. H. Lee, G. Doo, H. Kwon, W. Jo, S. Kim, H. Cho, and H.-T. Kim*

    https://doi.org/10.1002/advs.202301006
  • A hybrid electrolyte of LATP nanofibers and crosslinked gel electrolyte for Li metal batteries [ACS Applied Energy Materials, 6, 802 (2023)​]
    [166] A hybrid electrolyte of LATP nanofibers and crosslinked gel electrolyte for Li metal batteries [ACS Applied Energy Materials, 6, 802 (2023)​]

    H. Choi, H. Kwon, H.-T. Kim*

    https://doi.org/10.1021/acsaem.2c03090
  • Building lithium metal batteries under lean electrolyte conditions: challenges and progress [Energy Storage Materials, 55, 708-726 (2023)​]
    [165] Building lithium metal batteries under lean electrolyte conditions: challenges and progress [Energy Storage Materials, 55, 708-726 (2023)​]

    H. Kwon, J. Back, H.T. Kim*

    https://doi.org/10.1016/j.ensm.2022.12.016
  • Addressing the detrimental effect of CeO2 radical scavenger on the durability of polymer electrolyte membrane fuel cells [Chem. Eng. J., 452, 139061 (2023)​]
    [164] Addressing the detrimental effect of CeO2 radical scavenger on the durability of polymer electrolyte membrane fuel cells [Chem. Eng. J., 452, 139061 (2023)​]

    S. Yuk, J. Jung, K.-Y. Song, D.W. Lee, D.-H. Lee, S. Choi, G. Doo, J. Hyun, J. Kwen, J.Y. Kim* and H.-T. Kim*

    https://doi.org/10.1016/j.cej.2022.139061
  • Highly Efficient Bromine Capture and Storage Using N-containing Porous Organic Cages [J. Materials Chemistry A, 10, 24802-24812 (2022)​]
    [163] Highly Efficient Bromine Capture and Storage Using N-containing Porous Organic Cages [J. Materials Chemistry A, 10, 24802-24812 (2022)​]

    S. Lee, I. Kevlishvili, H. Kulik, H.-T. Kim, Y. Chung*, D.-Y. Koh*

    https://doi.org/10.1039/D2TA05420E
  • A zinc bromine battery with deep eutectic electrolytes [Advanced Science, 9, 2204908 (2022)]
    [162] A zinc bromine battery with deep eutectic electrolytes [Advanced Science, 9, 2204908 (2022)]

    J. Heo, K. Shin, H.T. Kim*

    https://doi.org/10.1002/advs.202204908
  • [161] Insights on the work function of the current collector surface in anode-free lithium metal batteries [J. Mater. Chem. A, 10, 20984 (2022)​]

    J. Jung, J.Y. Kim, I.J. Kim, H. Kwon, G. Kim, G. Doo, W. Jo, H.-T. Jung*, H.-T. Kim*

    https://doi.org/10.1039/D2TA04078F
  • A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries [Energy Storage Materials, 51, 777-788 (2022)​]
    [160] A dual-lithiophilic interfacial layer with intensified Lewis basicity and orbital hybridization for high-performance lithium metal batteries [Energy Storage Materials, 51, 777-788 (2022)​]

    Y. Roh, J. Song, J.-H. Lee, H Kwon, J. Baek, D. Shin, Y.G. Yoo, S. Ha, W. Kim, K. Ryu*, H.-T. Kim*

    https://doi.org/10.1016/j.ensm.2022.07.019
  • [159] Tuning of water distribution in the membrane electrode assembly of anion exchange membrane fuel cells using functionalized carbon additives [J. Power Sources, 533, 532835 (2022)​]

    J. Hyun, W. Jo, S.H. Yang. S.-H. Shin, G. Doo, S. Cho, D.-H. Lee, D. W. Lee, E. Oh, J. Y. Lee*, H.-T. Kim*

    https://doi.org/10.1016/j.jpowsour.2022.231835
  • [158] Regional control of multi-stimuli-responsive structural color switching surfaces by a micro-patterned DNA-hydrogel assembly [Nano Letters, 22, 5069-5076 (2022)]

    J. Shin, W. Jo, J.H Hwang, J. Han, W. Lee, S. Park, Y.S. Kim, H.-T. Kim*, D.-G. Kim*

    https://doi.org/10.1021/acs.nanolett.2c00197
  • [157] Modulation of solvation structure and electrode work function by an ultrathin layer of polymer of intrinsic microporosity to enhance the reaction kinetics and uniformity of a Zn metal electrode in zinc ion batteries [Small, 18, 2201163 (2022)]

    J. Heo, Y.-E. Hwang , G. Doo, J. Jung, K. Shin, D.-Y. Koh*, H.-T. Kim*

    https://doi.org/10.1002/smll.202201163
  • [156] Identification of the electrical connection in the catalyst layer of the polymer electrolyte membrane water electrolyzer [Int. J. Hydrogen Energy, 47, 14017-14026 (2022)​]

    J. Kwen, G. Doo, S. Choi, H. Guim, S. Yuk, D.-H. Lee, D.W. Lee, J. Hyun, H.-T. Kim*

    https://doi.org/10.1016/j.ijhydene.2022.02.136